4.7 Article

Experimentally validated strain rate dependent material model for spherical ice impact simulation

期刊

出版社

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.ijimpeng.2013.01.013

关键词

Hail; Ice impact; Strain rate; Contact force; Numerical simulation

资金

  1. Federal Aviation Administration Joint Advanced Materials and Structures Center of Excellence (FAA JAMS CoE)

向作者/读者索取更多资源

A strain rate sensitive ice material model for spherical-geometry hail ice impact simulation has been developed using experimentally-measured strain rate dependent ice compressive strength data. Simulations of spherical ice impacts compared to dynamic force history measurements were found to be in close agreement with each other. The overall trend of measured peak impact force versus projectile kinetic energy was also compared, showing a strong correlation with the data. The scatter in the measured ice compressive strength data was incorporated in the model definition which in turn was found to capture the upper to lower bounds of the scatter in the measured ice sphere impact forces. Observations of the failure progression of an ice sphere during impact were made using high speed video. The simulation-predicted failure progression was found to match with the crack propagation developing during the impact experiments, thereby demonstrating that the model is representing the basic physics and phenomena governing spherical ice impacts, particularly the initial formation and growth of longitudinal cracks, and how these cracks relate to the development of peak impact force. (C) 2013 Elsevier Ltd. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据