4.7 Article

Finite element modeling of impact, damage evolution and penetration of thick-section composites

期刊

INTERNATIONAL JOURNAL OF IMPACT ENGINEERING
卷 38, 期 4, 页码 181-197

出版社

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.ijimpeng.2010.11.001

关键词

Ballistic impact; Composite damage modeling; Penetration mechanics; Thick-section composites

资金

  1. Army Research Laboratory
  2. [W911NF-06-2-011]

向作者/读者索取更多资源

Impact, damage evolution and penetration of thick-section composites are investigated using explicit finite element (FE) analysis. A full 3D FE model of impact on thick-section composites is developed. The analysis includes initiation and progressive damage of the composite during impact and penetration over a wide range of impact velocities, i.e., from 50 m/s to 1000 m/s. Low velocity impact damage is modeled using a set of computational parameters determined through parametric simulation of quasi-static punch shear experiments. At intermediate and high impact velocities, complete penetration of the composite plate is predicted with higher residual velocities than experiments. This observation revealed that the penetration-erosion phenomenology is a function of post-damage material softening parameters, strain rate dependent parameters and erosion strain parameters. With the correct choice of these parameters, the finite element model accurately correlates with ballistic impact experiments. The validated FE model is then used to generate the time history of projectile velocity, displacement and penetration resistance force. Based on the experimental and computational results, the impact and penetration process is divided into two phases, i.e., short time Phase I - shock compression, and long time Phase II - penetration. Detailed damage and penetration mechanisms during these phases are presented. (C) 2010 Elsevier Ltd. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据