4.7 Article

Polyaniline/reduced graphene oxide-modified carbon fiber brush anode for high-performance microbial fuel cells

期刊

INTERNATIONAL JOURNAL OF HYDROGEN ENERGY
卷 43, 期 37, 页码 17867-17872

出版社

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.ijhydene.2018.08.007

关键词

Microbial fuel cells; High conductive carbon fibers; Modification; Electron transport

向作者/读者索取更多资源

Polyaniline (PANI)/reduced graphene oxide (rGO) were synthesized by in-situ polymerization and were decorated on mesophase pitch-based carbon fiber brush (Pitch-CB) anode to promote microbial fuel cells (MFCs) power production. Mesophase pitch-based carbon fiber brush (Pitch-CB) becomes one of the most important research objects in MFCs. The mesophase pitch-based carbon fiber (CF) has excellent conductivity (about 2.0 mu Omega m) compared with PAN-based CF (about 30 mu Omega m). But the high conductive CF's surfaces have strong inert, and they are relatively smooth, which make it difficult to be adhered and enriched by microbes. By applying the PANI/rGO composite anode, the maximum power density (MPD) was increased to 862 mW m(-2), which was approximately 1.21 times higher than that of the Pitch-CB. The PANI can improve the surface roughness and surface potential of CFs, thus enhancing the adhesion of microbes and electrogenic performance of MFC. After the rGO was doped, the electrogenic performance of MFC was further improved. This study introduces a promising modifying method for the fabrication of high-performance anodes from simple, environment-friendly materials. (C) 2018 Hydrogen Energy Publications LLC. Published by Elsevier Ltd. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据