4.7 Article

Direct numerical simulation of lean premixed CH4/air and H2/air flames at high Karlovitz numbers

期刊

INTERNATIONAL JOURNAL OF HYDROGEN ENERGY
卷 39, 期 35, 页码 20216-20232

出版社

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.ijhydene.2014.09.173

关键词

Turbulent premixed combustion; Direct numerical simulation; High Karlovitz number; Detailed chemistry; Differential diffusion

资金

  1. Swedish Research Council (VR)
  2. National Centre for Combustion Science and Technology (CeCOST)

向作者/读者索取更多资源

Three-dimensional direct numerical simulation with detailed chemical kinetics of lean premixed CH4/air and H-2/air flames at high Karlovitz numbers (Ka similar to 1800) is carried out. It is found that the high intensity turbulence along with differential diffusion result in a much more rapid transport of H radicals from the reaction zone to the low temperature unburned mixtures (similar to 500 K) than that in laminar flamelets. The enhanced concentration of H radicals in the low temperature zone drastically increases the reaction rates of exothermic chain terminating reactions (e.g., H + O-2+M = HO2 + M in lean H-2/air flames), which results in a significantly enhanced heat release rate at low temperatures. This effect is observed in both CH4/air and H-2/air flames and locally, the heat release rate in the low temperature zone can exceed the peak heat release rate of a laminar flamelet. The effects of chemical kinetics and transport properties on the H-2/air flame are investigated, from which it is concluded that the enhanced heat release rate in the low temperature zone is a convection-diffusion-reaction phenomenon, and to obtain it, detailed chemistry is essential and detailed transport is important. Copyright (C) 2014, Hydrogen Energy Publications, LLC. Published by Elsevier Ltd. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据