4.7 Article

Dynamic modeling of high temperature PEM fuel cell start-up process

期刊

INTERNATIONAL JOURNAL OF HYDROGEN ENERGY
卷 39, 期 33, 页码 19067-19078

出版社

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.ijhydene.2014.09.095

关键词

HT-PEMFC; 3D spatial modeling; Start-up duration; Temperature distribution

资金

  1. German Federal Ministry for Education and Research

向作者/读者索取更多资源

High temperature proton exchange membrane fuel cells (HT-PEMFCs) are considered to be the next generation fuel cells. Compared with standard low temperature proton exchange membrane fuel cells (LT-PEMFCs) the electrochemical kinetics for electrode reactions are enhanced by using a polybenzimidazole based membrane at an operation temperature between 160 C and 180 C. However, starting HT-PEMFCs from room temperature to a proper operation temperature is a challenge in application where a fast start of the fuel cell is required such as in uninterruptible power supply systems. There are different methods to start-up HT-PEMFCs. Based on a 3D physical model of a single HT-PEMFC, the start-up process is analyzed by comparing the start-up duration of the different start-up concepts. Furthermore, the temperature distribution in the HT-PEMFC is also analyzed. Finally, an optimal start-up method is proposed for the given cell configuration. Copyright (C) 2014, Hydrogen Energy Publications, LLC. Published by Elsevier Ltd. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据