4.7 Article

WO3/BiVO4 composite photoelectrode prepared by improved auto-combustion method for highly efficient water splitting

期刊

INTERNATIONAL JOURNAL OF HYDROGEN ENERGY
卷 39, 期 6, 页码 2454-2461

出版社

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.ijhydene.2013.08.114

关键词

Visible-light responsive metal oxide; Hydrogen; Applied bias photon-to-current efficiency; Tungsten trioxide; Bismuth vanadate

资金

  1. Cabinet Office, Government of Japan

向作者/读者索取更多资源

We report on the improvement in the water splitting efficiency of a WO3/BiVO4 composite photoelectrode by the application of an improved auto-combustion method to the preparation of porous BiVO4 thin films. The unique feature of this preparation method is the addition of both NH4NO3, as a strong oxidizing agent, and an organic additive into BiVO4 precursor solution. The local decomposition heat of the organic additive and oxidizing agent created a porous film with small, highly crystalline BiVO4 particles. The photoelectrode has many advantages over existing ones, such as the high light-harvesting efficiency (LHE), a single BiVO4 phase, the facile access of the holes to the photoelectrode/electrolyte interface, and the ease of water and oxygen diffusion. The maximum incident photon-to-current efficiency (IPCE) was estimated to be 64% (at 440 nm, 1.23 V vs. RHE) and the applied bias photon-tocurrent efficiency (ABPE) reached as high as 1.28%. This ABPE value is highest among all oxide semiconductor photoelectrodes reported previously, except for the case of a stacking photoelectrode system. Copyright (C) 2013, Hydrogen Energy Publications, LLC. Published by Elsevier Ltd. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据