4.7 Article

Facile microwave-assisted synthesized reduced graphene oxide/tin oxide nanocomposite and using as anode material of microbial fuel cell to improve power generation

期刊

INTERNATIONAL JOURNAL OF HYDROGEN ENERGY
卷 39, 期 20, 页码 10724-10730

出版社

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.ijhydene.2014.05.008

关键词

Electrode modification; Tin oxide nanoparticles; Graphene oxide; Microbial fuel cell; Power generation

资金

  1. Iranian Renewable Energies Organization (SUNA)

向作者/读者索取更多资源

A new nanocomposite material was fabricated by a facile and reliable method for microbial fuel cell (MFC) anode. Tin oxide (SnO2) nanoparticles were anchored on the surface of reduced graphene oxide (RGO/SnO2) in two steps. The hydrothermal method was used for the modification of GO and then microwave-assisted method was used for coating of SnO2 on the modified GO. Nanohybrids of RGO/SnO2 achieved a maximum power density of 1624 mW M-2, when used as the MFC anode. The obtained power density was 2.8 and 4.8 times larger than that of RGO coated and bare anodes, respectively. The electrodes were characterized by scanning electron microscopy (SEM) and energy dispersive X-ray spectroscopy (EDX). The electrochemical characteristics were also studied by cyclic voltammetry (CV), linear sweep voltammetry (LSV) and electrochemical impedance spectroscopy (EIS). The high conductivity and large specific surface of the nanocomposite were greatly improved the bacterial biofilm formation and increased the electron transfer. The results demonstrate that the RGO/SnO2 nanocomposite was advantageous material for the modification of anode and enhanced electricity generation of MFC. Copyright (C) 2014, Hydrogen Energy Publications, LLC. Published by Elsevier Ltd. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据