4.7 Article

Three-dimensionally ordered macroporous LaFeO3 perovskites for chemical-looping steam reforming of methane

期刊

INTERNATIONAL JOURNAL OF HYDROGEN ENERGY
卷 39, 期 7, 页码 3243-3252

出版社

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.ijhydene.2013.12.046

关键词

3DOM; Perovskite; Chemical-looping steam methane reforming; Syngas; Hydrogen

资金

  1. National Natural Science Foundation of China [51076154]
  2. National Key Technology R&D Program of 12th Five-Year Plan of China [2011BAD15B05]
  3. Science & Technology Research Project of Guangdong Province [20108010900047]

向作者/读者索取更多资源

Three-dimensionally ordered macroporous (3DOM) LaFeO3 and nano-LaFeO3 perovskitetype oxides were synthesized by impregnation of polystyrene (PS) templates and combustion method, respectively. The obtained LaFeO3 perovskites were characterized by scanning electron microscopy (SEM), X-ray diffraction (XRD), Brunauer Emmett Teller (BET) surface area, and hydrogen-temperature programmed reduction (H-2-TPR). The performance of the perovsldtes as oxygen carriers in chemical looping steam methane reforming (CL-SMR) to produce syngas (H-2 + CO) and hydrogen were investigated. The synthesized 3DOM-LaFeO3 was pure crystalline perovskite giving a surface area of 8.088 m(2)/g, higher than that of nano-LaFeO3 particles (4.323 m(2)/g). In the methane reduction stage, methane was partially oxidized into syngas at a H-2/CO molar ratio close to 2:1 by the 3DOM-LaFeO3 in the main stage of the reactions. In the steam oxidation stage, the reduced perovskites were oxidized by steam to generate hydrogen simultaneously. No significant decrease of the yields of syngas and hydrogen was observed during ten successive redox cycles, indicating that the 3DOM-LaFeO3 perovskites have good repeatability. In comparison to nano-LaFeO3, 3DOM-LaFeO3 has more stable reactivity of methane oxidation and better resistance to carbon formation. In spite of a part of 3DOM structure were collapsed in the course of the cyclic reactions, the specific surface area of the 3DOMLaFeO(3) was still higher than that of the nano one. The better reactivity of 3DOM-LaFeO3 compared with that of nano-LaFeO3 is partially attributed to the higher surface area. Copyright (C) 2013, Hydrogen Energy Publications, LLC. Published by Elsevier Ltd. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据