4.7 Article

Hydrogen car fill-up process modeling and simulation

期刊

INTERNATIONAL JOURNAL OF HYDROGEN ENERGY
卷 38, 期 8, 页码 3401-3418

出版社

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.ijhydene.2012.12.064

关键词

Hydrogen; Compression; Thermodynamics; Modeling; Cubic state equation; DAE

资金

  1. National Science Foundation [NSF-CBET 0829211, NSF-CBET 0943264]

向作者/读者索取更多资源

A novel mathematical model is proposed, based on thermodynamics and transport phenomena fundamentals, that aims to capture the hydrogen pressure, temperature and molar volume evolution during a hydrogen vehicle's fill-up process. Hydrogen's thermodynamic properties are calculated through the use of the generic cubic equation of state and residual properties. The obtained model gives rise to a set of differential-algebraic equations (DAE), which are then simulated using a hybrid Newton/Runge-Kutta method. The model's pressure, temperature, volume, and mass flowrate predictions match, within 2%, corresponding experimental data obtained, during a fill-up process, from a fuel cell vehicle's and the fueling station's storage tanks. The model also elucidates the two mechanisms contributing to the temperature increase in the vehicle storage tank: heating by Joule-Thomson expansion and heating by compression. It is shown that Joule-Thomson heating dominates at the beginning of the fill-up process, while compression heating-dominates towards the end of the fill-up process. Copyright (C) 2013, Hydrogen Energy Publications, LLC. Published by Elsevier Ltd. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据