4.7 Article

Shape effects of CdS photocatalysts on hydrogen production

期刊

INTERNATIONAL JOURNAL OF HYDROGEN ENERGY
卷 38, 期 18, 页码 7224-7231

出版社

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.ijhydene.2013.03.173

关键词

Hydrogen; Cadmium sulfide; Shape effect; Morphology; Ethylenediamine

资金

  1. NSFC (gs1) [21103106, 21107069]
  2. Construction Capacity Project (gs2) [10160502300]
  3. Shanghai Rising-Star Program (gs3) [10QA1402800]
  4. Dawn (gs4) Program of Shanghai Education Commission [11SG52]

向作者/读者索取更多资源

Granular and lamellar structured cadmium sulfide (CdS) with the shapes of branches, cauliflower and nanorods, were synthesized via a hydrothermal process. During the synthesis, ethylenediamine (EN) was used as a template and deionized water (DIW) as a coordination agent. Experimental results show that the morphology of CdS nanoparticles was controlled by EN concentration, CdS precursor concentration and molar ratio of Cd(NO3)(2)center dot 4H(2)O to thiourea (NH2CSNH2). It was found that the key shape-controlling step is the formation of CdS nuclei via the decomposition of the cadmium-ethylenediamine complex. Various shapes of CdS nanoparticles were obtained based on the concentrations of EN in water. CdS particles synthesized in pure water show granular and lamellar shapes with a mixture of hexagonal and cubic crystal structures. When EN concentration was increased to 30%, branched morphology of CdS particles was observed. Further increasing EN concentration to 70% CdS catalyst particles resulted in a cauliflower-like shape. Finally, CdS nanorod particles with a hexagonal structure were developed when synthesized in a pure EN solution. Although EN concentration plays an important role in the shapes of CdS particles, experimental observation showed that the diameter and aspect ratio of as prepared CdS nanorods were determined by concentrations of CdS precursors. In the course of photocatalytic hydrogen production, nearly 2577 mu mol H-2 was produced over 0.05 g CdS nanorods in 4.0 h. The rate of hydrogen evolution over the CdS nanorods based photocatalyst was approximately 42.6 times higher than that over granular and agglomerated lamellar CdS. Copyright (c) 2013, Hydrogen Energy Publications, LLC. Published by Elsevier Ltd. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据