4.7 Article Proceedings Paper

Performance enhancement of fuel cells using bipolar plate duct indentations

期刊

INTERNATIONAL JOURNAL OF HYDROGEN ENERGY
卷 38, 期 13, 页码 5485-5496

出版社

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.ijhydene.2012.10.020

关键词

Computational fluid dynamics; Convection heat transfer; Partially porous channel; Direct methanol membrane fuel cells; Slow reaction electrodes

向作者/读者索取更多资源

In this paper, a method called bipolar plate duct indentation is introduced, in which some partial blocks (indents) are recommended to be placed along the fluid delivery channels being machined in bipolar plates (BPPs) of fuel cells (FCs). The indents are to enhance the over-rib convections and the kinetics of reactions in catalyst layers to improve the cell performance. As an initial step to numerically model this problem, a partially porous channel of BPP of a Direct Methanol FC (DMFC) is taken as the model geometry, and the level of heat exchange enhancement due to channel indentation is examined in this geometry. The performed parametric studies show that channel indentation enhances the heat exchange by 40%; with some minor increases in fluid delivery pumping power. From the analogy between the heat and mass transfer problems in dynamically similar problems, it is believed that the mass exchanges between the core channel and the catalyst layer in FC will enhance the same order as that in the pure heat transfer problem. The present work provides helpful guidelines to the bipolar plate manufactures of low-temperature FCs to considerably alleviate the losses on the side(s) of slow reaction electrodes. Copyright (C) 2012, Hydrogen Energy Publications, LLC. Published by Elsevier Ltd. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据