4.7 Article

Comparison of thermochemical, electrolytic, photoelectrolytic and photochemical solar-to-hydrogen production technologies

期刊

INTERNATIONAL JOURNAL OF HYDROGEN ENERGY
卷 37, 期 21, 页码 16287-16301

出版社

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.ijhydene.2012.03.057

关键词

Hydrogen production; Solar hydrogen production; Solar energy; Water splitting

资金

  1. Natural Sciences and Engineering Council of Canada
  2. Ontario Research Excellence Fund

向作者/读者索取更多资源

Hydrogen produced from solar energy is one of the most promising solar energy technologies that can significantly contribute to a sustainable energy supply in the future. This paper discusses the unique advantages of using solar energy over other forms of energy to produce hydrogen. Then it examines the latest research and development progress of various solar-to-hydrogen production technologies based on thermal, electrical, and photon energy. Comparisons are made to include water splitting methods, solar energy forms, energy efficiency, basic components needed by the processes, and engineering systems, among others. The definitions of overall solar-to-hydrogen production efficiencies and the categorization criteria for various methods are examined and discussed. The examined methods include thermochemical water splitting, water electrolysis, photoelectrochemical, and photochemical methods, among others. It is concluded that large production scales are more suitable for thermochemical cycles in order to minimize the energy losses caused by high temperature requirements or multiple chemical reactions and auxiliary processes. Water electrolysis powered by solar generated electricity is currently more mature than other technologies. The solar-to-electricity conversion efficiency is the main limitation in the improvement of the overall hydrogen production efficiency. By comparison, solar powered electrolysis, photoelectrochemical and photochemical technologies can be more advantageous for hydrogen fueling stations because fewer processes are needed, external power sources can be avoided, and extra hydrogen distribution systems can be avoided as well. The narrow wavelength ranges of photosensitive materials limit the efficiencies of solar photovoltaic panels, photoelectrodes, and photocatalysts, hence limit the solar-to-hydrogen efficiencies of solar based water electrolysis, photoelectrochemical and photochemical technologies. Extension of the working wavelength of the materials is an important future research direction to improve the solar-to-hydrogen efficiency. Copyright (C) 2012, Hydrogen Energy Publications, LLC. Published by Elsevier Ltd. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据