4.7 Article

2D thermal modeling of a solid oxide electrolyzer cell (SOEC) for syngas production by H2O/CO2 co-electrolysis

期刊

INTERNATIONAL JOURNAL OF HYDROGEN ENERGY
卷 37, 期 8, 页码 6389-6399

出版社

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.ijhydene.2012.01.072

关键词

Solid oxide fuel cell; Heat transfer; Synthetic fuel; Co-electrolysis; Thermo-electrochemical model

资金

  1. Hong Kong Polytechnic University, Hong Kong [A-PK48]

向作者/读者索取更多资源

Solid oxide fuel cells (SOFCs) can be operated in a reversed mode as electrolyzer cells for electrolysis of H2O and CO2. In this paper, a 2D thermal model is developed to study the heat/mass transfer and chemical/electrochemical reactions in a solid oxide electrolyzer cell (SOEC) for H2O/CO2 co-electrolysis. The model is based on 3 sub-models: a computational fluid dynamics (CFD) model describing the fluid flow and heat/mass transfer; an electrochemical model relating the current density and operating potential; and a chemical model describing the reversible water gas shift reaction (WGSR) and reversible methanation reaction. It is found that reversible methanation and reforming reactions are not favored in H2O/CO2 co-electrolysis. For comparison, the reversible WGSR can significantly influence the co-electrolysis behavior. The effects of inlet temperature and inlet gas composition on H2O/CO2 co-electrolysis are simulated and discussed. Copyright (C) 2012, Hydrogen Energy Publications, LLC. Published by Elsevier Ltd. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据