4.7 Article

Fe (II) segregation at a specific crystallographic site of fibrous erionite: A first step toward the understanding of the mechanisms inducing its carcinogenicity

期刊

MICROPOROUS AND MESOPOROUS MATERIALS
卷 211, 期 -, 页码 49-63

出版社

ELSEVIER SCIENCE BV
DOI: 10.1016/j.micromeso.2015.02.046

关键词

Erionite; Malignant mesothelioma; Fe (II) binding; Cation exchange; XRPD

资金

  1. Sapienza Universita di Roma

向作者/读者索取更多资源

Two samples of fibrous erionite from different localities of Oregon, USA were suspended in FeCl2 solutions at different concentrations, at pH ca. 5, in anaerobic conditions. Comparison between released and acquired charges under the form of Fe confirms that erionite binds Fe (II) by ion exchange with the extra framework (EF) cations, mainly Na. The Fe (II) binding process exhibited by both studied samples here investigated indicates a direct correlation between the extent of the ion-exchange process and the Fe (II) concentration of the solution used for fibres incubation. In the sample from Rome no further Fe (II) acquisition was observed for concentrations exceeding 500 mu M FeCl2. XPS investigation revealed that, when comparing surface and bulk composition of the samples, no Fe enrichment of the fibre surface was observed. Moreover, the location of Fe (II) within the erionite cage has been devised by combining chemical and structural data. Results highlight that, for both samples, Fe (II) is fixed at the Ca3 site being six-fold coordinated to water molecules. The occurrence of Fe (II) within the erionite cage causes a gradual migration of the other EF cations and in addition, induces a small rearrangement of the water molecules positions. It is worth mentioning that, in Fe-loaded zeolites at rather low Fe content, the Fe sites with very low nuclearity, located in well-defined crystallographic positions, represent the active sites for the formation of reactive oxygen species. Therefore, identification of segregation of Fe (II) at Ca3, which is coupled with the high surface area of erionite, provides very important information for the understanding of the molecular mechanism/s inducing its strong carcinogenicity. (C) 2015 Elsevier Inc. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据