4.7 Article

Sulfonated SBA-15 mesoporous silica-incorporated sulfonated poly(phenylsulfone) composite membranes for low-humidity proton exchange membrane fuel cells: Anomalous behavior of humidity-dependent proton conductivity

期刊

INTERNATIONAL JOURNAL OF HYDROGEN ENERGY
卷 37, 期 11, 页码 9202-9211

出版社

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.ijhydene.2012.03.036

关键词

Proton exchange membrane fuel cells; Sulfonated SBA-15 mesoporous silica; Sulfonated poly(phenylsulfone); Composite membranes; Proton conductivity; Low humidity

资金

  1. Fundamental R&D Program for Core Technology of Materials
  2. Ministry of Knowledge Economy
  3. Fundamental R&D Program for Technology of World Premier Materials
  4. Ministry of Knowledge Economy, Republic of Korea

向作者/读者索取更多资源

Sulfonated SBA-15 mesoporous silica (SM-SiO2)-incorporated sulfonated poly(phenylsulfone) (SPPSU) composite membranes are fabricated for potential application in low-humidity proton exchange membrane fuel cells (PEMFCs). The SM-SiO2 particles are synthesized using tetraethoxy silane (TEOS) as a mechanical framework precursor, Pluronic 123 triblock copolymer as a mesopore-forming template, and mercaptopropyl trimethoxysilane (MPTMS) as a sulfonation agent. A distinctive feature of the SM-SiO2 particles is the long-range ordered 1-D skeleton of hexagonally aligned mesoporous cylindrical channels bearing sulfonic acid groups. Based on a comprehensive characterization of the SM-SiO2 particles, the effect of SM-SiO2 (as a functional filler) addition on the proton conductivity of the SPPSU composite membrane is examined as a function of temperature and relative humidity. An intriguing finding is that the proton conductivity of the SPPSU composite membrane exhibits a strong dependence on the relative humidity of measurement conditions. This anomalous behavior is further discussed with an in-depth consideration of the characteristics and dispersion state of SM-SiO2 particles, which affect the tortuous path for proton movement, water uptake, and state of water. Notably, at low-humidity conditions, the SM-SiO2 particles in the SPPSU composite membrane serve as an effective water reservoir to tightly retain water molecules and also as a supplementary proton conductor, whereas they behave as a barrier to proton transport at fully hydrated conditions. Copyright (C) 2012, Hydrogen Energy Publications, LLC. Published by Elsevier Ltd. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据