4.7 Article

Comparison of microbial electrolysis cells operated with added voltage or by setting the anode potential

期刊

INTERNATIONAL JOURNAL OF HYDROGEN ENERGY
卷 36, 期 17, 页码 10550-10556

出版社

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.ijhydene.2011.05.148

关键词

Boosted power; Energy input; Hydrogen; Methane; Microbial electrolysis cell; Set anode potential

资金

  1. National Renewable EnergyLaboratory (NREL)
  2. King Abdullah University of Scienceand Technology (KAUST) [KUS-I1-003-13]

向作者/读者索取更多资源

Hydrogen production in a microbial electrolysis cell (MEC) can be achieved by either setting the anode potential with a potentiostat, or by adding voltage to the circuit with a power source. In batch tests the largest total gas production (46 +/- 3 mL), lowest energy input (2.3 +/- 0.3 kWh/m(3) of H-2 generated), and best overall energy recovery (eta(E+S) = 58 +/- 6%) was achieved at a set anode potential of E-An = -0.2 V (vs Ag/AgCl), compared to set potentials of -0.4 V, 0 V and 0.2 V, or an added voltage of E-ap = 0.6 V. Gas production was 1.4 times higher with EA = 0.2 V than with Eap = 0.6 V. Methane production was also reduced at set anode potentials of 0.2 V and higher than the other operating conditions. Continuous flow operation of the MECs at the optimum condition of EAn = 0.2 V initially maintained stable hydrogen gas production, with 68% H-2 and 21% CH4, but after 39 days the gas composition shifted to 55% H-2 and 34% CH4. Methane production was not primarily anode-associated, as methane was reduced to low levels by placing the anode into a new MEC housing. These results suggest that MEC performance can be optimized in terms of hydrogen production rates and gas composition by setting an anode potential of -0.2 V, but that methanogen proliferation must be better controlled on non-anodic surfaces. Copyright (C) 2011, Hydrogen Energy Publications, LLC. Published by Elsevier Ltd. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据