4.7 Article

Electrochemical evaluation of molybdenum disulfide as a catalyst for hydrogen evolution in microbial electrolysis cells

期刊

INTERNATIONAL JOURNAL OF HYDROGEN ENERGY
卷 36, 期 16, 页码 9439-9445

出版社

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.ijhydene.2011.05.080

关键词

Hydrogen evolution reaction; Molybdenum disulfide; Platinum; Stainless steel

资金

  1. Air Products and Chemicals, Inc.

向作者/读者索取更多资源

There is great interest in hydrogen evolution in bioelectrochemical systems, such as microbial electrolysis cells (MECs), but these systems require non-optimal near-neutral pH conditions and the use of low-cost, non-precious metal catalysts. Here we show that molybdenum disulfide (MoS(2)) composite cathodes have electrochemical performance superior to stainless steel (SS) (currently the most promising low-cost, non-precious metal MEC catalyst) or Pt-based cathodes in phosphate or perchlorate electrolytes, yet they cost similar to 4.5 times less than Pt-based composite cathodes. At current densities typical of many MECs (2-5 A/m(2)), the optimal surface density with MoS(2) particles on carbon cloth was 25 g/ m(2), achieving 31 mV less hydrogen evolution overpotential than similarly constructed Pt cathodes in galvanostatic tests with a phosphate buffer. At higher current densities (8-10 A/m(2)) the MoS(2) catalyst had 82 mV less hydrogen evolution overpotential than the Pt-based catalyst. MoS(2) composite cathodes performed similarly to Pt cathodes in terms of current densities, hydrogen production rates and COD removal over several batch cycles in MEC reactors. These results show that MoS(2) can be used to substantially reduce the cost of cathodes used in MECs for hydrogen gas production. Copyright (C) 2011, Hydrogen Energy Publications, LLC. Published by Elsevier Ltd. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据