4.7 Article

Investigation of the effects of hydrogen on cylinder pressure in a split-injection diesel engine at heavy EGR

期刊

INTERNATIONAL JOURNAL OF HYDROGEN ENERGY
卷 36, 期 20, 页码 13158-13170

出版社

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.ijhydene.2011.07.050

关键词

Hydrogen; Diesel engine; EGR; Cylinder pressure; Heat release analysis; NOx emission

向作者/读者索取更多资源

The distinctive properties of hydrogen have initiated considerable applied research related to the internal combustion engine. Recently, it has been reported that NOx emissions were reduced by using hydrogen in a diesel engine at low temperature and heavy EGR conditions. As the continuing study, cylinder pressure was also investigated to determine the combustion characteristics and their relationship to NOx emissions. The test engine was operated at constant speed and fixed diesel fuel injection rate (1500 rpm, 2.5 kg/h). Diesel fuel was injected in a split pattern into a 2-L diesel engine. The cylinder pressure was measured for different hydrogen flow rates and EGR ratios. The intake manifold temperature was controlled to be the same to avoid the gas intake temperature variations under the widely differing levels (2%-31%) of EGR. The measured cylinder pressure was analyzed for characteristic combustion values, such as mass burn fraction and combustion duration. The rising crank angle of the heat release rate was unaffected by the presence of hydrogen. However, supplying hydrogen extended the main combustion duration. This longer main combustion duration was particularly noticeable at the heavy EGR condition. It correlated well with the reduced NOx emissions. Copyright (C) 2011, Hydrogen Energy Publications, LLC. Published by Elsevier Ltd. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据