4.7 Article

Thermodynamic analysis of hydrogen production from methane via autothermal reforming and partial oxidation followed by water gas shift reaction

期刊

INTERNATIONAL JOURNAL OF HYDROGEN ENERGY
卷 35, 期 21, 页码 11787-11797

出版社

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.ijhydene.2010.08.126

关键词

Hydrogen generation and production; Autothermal reforming (ATR); and steam reforming (SR); Partial oxidation of methane (POM); Water gas shift reaction (WGSR); Thermodynamic analysis; Two-stage reaction

资金

  1. National Science Council, Taiwan, ROC

向作者/读者索取更多资源

Reaction characteristics of hydrogen production from a one-stage reaction and a two-stage reaction are studied and compared with each other in the present study, by means of thermodynamic analyses. In the one-stage reaction, the autothermal reforming (ATR) of methane is considered. In the two-stage reaction, it is featured by the partial oxidation of methane (POM) followed by a water gas shift reaction (WGSR) where the temperatures of POM and WGSR are individually controlled. The results indicate that the reaction temperature of ATR plays an important role in determining H-2 yield. Meanwhile, the conditions of higher steam/methane (S/C) ratio and lower oxygen/methane (O/C) ratio in association with a higher reaction temperature have a trend to increase H-2 yield. When O/C <= 0.125, the coking behavior may be exhibited. In regard to the two-stage reaction, it is found that the methane conversion is always high in POM, regardless of what the reaction temperature is. When the O/C ratio is smaller than 0.5, H-2 is generated from the partial oxidation and thermal decomposition of methane, causing solid carbon deposition. Following the performance of WGSR, it suggests that the H-2 yield of the two-stage reaction is significantly affected by the reaction temperature of WGSR. This reflects that the temperature of WGSR is the key factor in producing H-2. When methane, oxygen and steam are in the stoichiometric ratio (i.e. 1:0.5:1), the maximum H-2 yield from ATR is 2.25 which occurs at 800 degrees C. In contrast, the maximum H-2 yield of the two-stage reaction is 2.89 with the WGSR temperature of 200 degrees C. Accordingly, it reveals that the two-stage reaction is a recommended fuel processing method for hydrogen production because of its higher H-2 yield and flexible operation. (C) 2010 Professor T. Nejat Veziroglu. Published by Elsevier Ltd. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据