4.7 Article

Zeolite confined copper(0) nanoclusters as cost-effective and reusable catalyst in hydrogen generation from the hydrolysis of ammonia-borane

期刊

INTERNATIONAL JOURNAL OF HYDROGEN ENERGY
卷 35, 期 1, 页码 187-197

出版社

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.ijhydene.2009.10.055

关键词

Copper(0) nanoclusters; Zeolite; Ammonia-borane; Hydrolysis; Hydrogen storage; Heterogeneous catalyst

资金

  1. Turkish Academy of Sciences
  2. TUBITAK [2214, 2218]

向作者/读者索取更多资源

Herein we report the development of a cost-effective nanocluster catalyst for the hydrolytic dehydrogenation of ammonia-borane which is considered to be one among the new hydrogen storage materials. Zeolite confined copper(0) nanoclusters were prepared by the ion-exchange of Cu2+ ions with the extra framework Na+ ions in zeolite-Y followed by reduction of the Cu2+ ions within the cavities of zeolite with sodium borohydride in aqueous solution and characterized by HR-TEM, XRD, XPS, SEM, EDX, ICP-OES, Raman spectroscopy and N-2 adsorption-desorption technique. Zeolite confined copper(0) nanoclusters are found to be active catalysts in the hydrolysis of ammonia-borane even at low temperatures (<= 15 degrees C) and stable enough for being isolated as solid materials. They provide 1300 turnovers in hydrogen generation from the hydrolysis of ammonia-borane at room temperature. The average value of turnover frequency is 46.5 h(-1) for the same reaction. More importantly, zeolite confined copper(0) nanoclusters were found to be isolable, bottleable and reusable catalysts in the hydrolytic dehydrogenation of ammonia-borane; even at fifth run the complete release of hydrogen from the hydrolysis of ammonia-borane at room temperature is achieved. The work reported here also includes the full experimental details for the collection of a wealth of kinetic data to determine the activation energy and the effect of catalyst concentration on the rate for the catalytic hydrolysis of ammonia-borane. (C) 2009 Professor T. Nejat Veziroglu. Published by Elsevier Ltd. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据