4.3 Article Proceedings Paper

FAULT TOLERANCE IN PETASCALE/EXASCALE SYSTEMS: CURRENT KNOWLEDGE, CHALLENGES AND RESEARCH OPPORTUNITIES

出版社

SAGE PUBLICATIONS LTD
DOI: 10.1177/1094342009106189

关键词

petascale/exascale; fault tolerance; knowledge; challenges; opportunities

向作者/读者索取更多资源

The emergence of petascale systems and the promise of future exascale systems have reinvigorated the community interest in how to manage failures in such systems and ensure that large applications, lasting several hours or tens of hours, are completed successfully. Most of the existing results for several key mechanisms associated with fault tolerance in high-performance computing (HPC) platforms follow the rollback-recovery approach. Over the last decade, these mechanisms have received a lot of attention from the community with different levels of success. Unfortunately, despite their high degree of optimization, existing approaches do not fit well with the challenging evolutions of large-scale systems. There is room and even a need for new approaches. Opportunities may come from different origins: diskless checkpointing, algorithmic-based fault tolerance, proactive operation, speculative execution, software transactional memory, forward recovery, etc. The contributions of this paper are as follows: (1) we summarize and analyze the existing results concerning the failures in large-scale computers and point out the urgent need for drastic improvements or disruptive approaches for fault tolerance in these systems; (2) we sketch most of the known opportunities and analyze their associated limitations; (3) we extract and express the challenges that the HPC community will have to face for addressing the stringent issue of failures in HPC systems.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.3
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据