4.7 Article

Experimental investigation on simultaneous measurement of temperature distributions and radiative properties in an oil-fired tunnel furnace by radiation analysis

期刊

出版社

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.ijheatmasstransfer.2010.10.007

关键词

Oil-fired furnaces; Inverse radiation analysis; Temperature distribution; Radiative property

资金

  1. National Natural Science Foundation of China [50636010, 50721005]
  2. FAPESP of Sau Paulo state, Brazil [03/12456-7]

向作者/读者索取更多资源

The paper reports experimental investigations on simultaneous measurement of temperature distribution and radiative properties in an oil-fired tunnel furnace by radiation analysis. Two color CCD cameras were used to obtain visible thermal radiation in the furnace. A radiation imaging model was established by the calculation of radiative transfer equation in the furnace. The temperature distribution and radiative properties can be obtained from the inversion of the radiative imaging model. The validity of radiative imaging model was verified by the numerical analysis of cavity radiation and isothermal system radiation, and the accuracy of reconstruction method was validated by simulation reconstruction. The experimental analysis was divided into two parts. Firstly, the temperatures of wall surface were calculated from the radiative image of refractory wall and compared with the measured temperature of a thermocouple. The difference between the two methods was only about 20 K. Secondly, the temperature distributions in the furnace, absorption coefficients of combustion medium, and emissivities of refractory wall were reconstructed. Because of a single burner in the tunnel furnace, the temperature distributions in the XY vertical sections in the furnace were with temperature higher in the center and lower near the refractory wall surface, and the temperatures decreased along the length of the tunnel furnace. The measured emissivity of refractory wall showed that the refractory material of RPA-MC30 is with high reflectivity in visible spectrum. (C) 2010 Elsevier Ltd. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据