4.7 Article

Visualization and thermal resistance measurement for the sintered mesh-wick evaporator in operating flat-plate heat pipes

期刊

INTERNATIONAL JOURNAL OF HEAT AND MASS TRANSFER
卷 53, 期 7-8, 页码 1498-1506

出版社

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.ijheatmasstransfer.2009.11.046

关键词

Heat pipe; Evaporation resistance; Evaporation heat transfer; Two-phase heat transfer; Mesh wick

资金

  1. National Science Council, ROC [NSC 96-2221-E-007-059-MY2]

向作者/读者索取更多资源

This work presents visualization and measurement of the evaporation resistance for operating flat-plate heat pipes with sintered multi-layer copper-mesh wick. A glass plate was adopted as the top wall for visualization. The multi-layer copper-mesh wick was sintered on the copper bottom plate. With different combinations of 100 and 200 mesh screens, the wick thickness ranged from 0.26 mm to 0.8 mm. Uniform heating was applied to the base plate near one end with a heated surface of 1.1 x 1.1 cm(2). At the other end was a cooling water jacket. At various water charges, the evaporation resistances were measured with evaporation behavior visualized for heat fluxes of 16-100 W/cm(2). Quiescent surface evaporation without nucleate boiling was observed for all test conditions. With heat flux increased, the water film receded and the evaporation resistance reduced. The minimum evaporation resistances were found when a thin water film was sustained in the bottom mesh layer. With heat flux further increased, partial dryout appeared with dry patches in the bottom mesh holes, first at the upstream end of the heated area and then expanded across the evaporator. The evaporation resistance re-rose in response to the appearance and expansion of partial dryout. When the fine 200 mesh screen was used as the bottom layer, its thinner thickness and stronger capillarity led to smaller minimum evaporation resistances. (C) 2009 Elsevier Ltd. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据