4.7 Article

Bio-heat transfer analysis during short pulse laser irradiation of tissues

期刊

INTERNATIONAL JOURNAL OF HEAT AND MASS TRANSFER
卷 51, 期 23-24, 页码 5511-5521

出版社

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.ijheatmasstransfer.2008.04.033

关键词

Short pulse laser; Tissue irradiation; Focused laser beam; Non-Fourier heat conduction

资金

  1. Raydiance Inc.

向作者/读者索取更多资源

The objective of this paper is to analyze the temperature distributions and heat affected zone in skin tissue medium when irradiated with either a collimated or a focused laser beam from a short pulse laser source. Experiments are performed on multi-layer tissue phantoms simulating skin tissue with embedded inhomogeneities simulating subsurface tumors and as well as on freshly excised mouse skin tissue samples. Two types of lasers have been used in this study - namely a Q-switched pulsed 1064 nm Nd:YAG short pulse laser having a pulse width of 200 ns and a 1552 nm diode short pulsed laser having a pulse width of 1.3 ps. Experimental measurements of axial and radial temperature distribution in the tissue medium are compared with the numerical modeling results. For numerical modeling, the transient radiative transport equation is first solved using a discrete ordinates method for obtaining the intensity distribution and radiative heat flux inside the tissue medium. Then the temperature distribution is obtained by coupling the bio-heat transfer equation with either hyperbolic non-Fourier or parabolic Fourier heat conduction model. The hyperbolic heat conduction equation is solved using MacCormack's scheme with error terms correction. It is observed that experimentally measured temperature distribution is in good agreement with that predicted by hyperbolic heat conduction model. The experimental measurements demonstrate that converging laser beam focused directly at the subsurface location can produce desired high temperature at that location compared to that produced by collimated laser beam for the same laser parameters. Finally the ablated tissue removal is characterized using histological studies as a function of laser parameters. (C) 2008 Elsevier Ltd. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据