4.6 Article

NGCC post-combustion CO2 capture with Ca/carbonate looping: Efficiency dependency on sorbent properties, capture unit performance and process configuration

期刊

出版社

ELSEVIER SCI LTD
DOI: 10.1016/j.ijggc.2014.02.015

关键词

Post-combustion; CO2 capture; Solid sorbents; Carbonate looping; NGCC; Process simulations

资金

  1. BIGCCS Centre
  2. Research Council of Norway [193816/S60]

向作者/读者索取更多资源

This paper evaluates the potential of post-combustion CO2 capture from a natural gas combined cycle (NGCC) through the use of solid sorbents at high temperatures. Experimental deactivation and residual sorption capacity parameters for various sorbents reported in the literature, as well as from own lab, are reviewed and the performance of three different Ca-based sorbents is studied in more detail: natural CaCO3, natural dolomite and synthetic CaO. Results from steady-state simulations of the Ca/carbonate looping unit show how the energy requirement for sorbent regeneration varies with sorbent properties, sorbent make-up ratio, internal heat recuperation and CO2 recirculation temperature. Net electric efficiency for a reference NGCC power plant without CO2 capture is 58.1% on a lower heating value basis and 49.5% for 90% CO2 capture rate with MEA. In comparison, an NGCC combined with looping of synthetic CaO sorbent and an advanced secondary steam cycle reaches a net electric efficiency of 53.1% for a capture rate above 90%. It is concluded that in addition to improved sorbent capacity and stability, heat recuperation in the solid streams between the carbonator and calciner as well as high CO2 recycle temperature are important for obtaining the high overall power plant efficiency. (C) 2014 Elsevier Ltd. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据