4.7 Article

The low-salt stimulon in Vibrio parahaemolyticus

期刊

出版社

ELSEVIER SCIENCE BV
DOI: 10.1016/j.ijfoodmicro.2009.11.006

关键词

Vibrio parahaemolyticus; Osmotic stress; Osmoadaptation; Microarray

资金

  1. National Natural Science Foundation of China [30871370]
  2. National Key Technology RD program [2006BAK02A15]
  3. National Key Program for Infectious Disease of China [2009ZX10004-103, 2008ZX10004-009]

向作者/读者索取更多资源

Vibrio parahaemolyticus is the leading cause of seafood-associated bacterial gastroenteritis and is a moderately halophilic, salt-requiring bacterium. Global gene expression profiles of V. parahaemolyticus grown under 2% and 0.66% NaCl were compared to define the low-salt stimulon. The ectABC-lysC operon for synthesis of the compatible solute ectoine, as well as three compatible solute transport systems, namely ProU (glycine betaine), OpuD1 (glycine betaine) and Pot2 (spermidine), was up-regulated under 2% NaCl relative to 0.66% NaCl. The 2% NaCl condition favored the inducible expression of OmpW, OmpN and OmpA2, while repressed the expression of OmpA1, OmpU and VP1008. These results indicated that, to master the hyperosmotic stress of saline environments, V. parahaemolyticus might not only accumulate osmoprotectants through uptake or endogenous synthesis of compatible solutes, but also remodel its profiles of outer membrane protein to restore its cell membrane. The above differentially regulated genes will provide novel candidates for the further investigation of the molecular mechanisms of osmoadaptation in V. parahaemolyticus. (C) 2009 Elsevier B.V. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据