4.7 Article

Biological diversity of Saccharomyces yeasts of spontaneously fermenting wines in four wine regions: Comparative genotypic and phenotypic analysis

期刊

INTERNATIONAL JOURNAL OF FOOD MICROBIOLOGY
卷 140, 期 2-3, 页码 239-248

出版社

ELSEVIER SCIENCE BV
DOI: 10.1016/j.ijfoodmicro.2010.03.024

关键词

Wine; Yeasts; Biodiversity; Fermentation; Secondary metabolites

资金

  1. National Research and Development Programme, Hungary [NKFP/017/2005]

向作者/读者索取更多资源

Combination of molecular genetic analysis (karyotyping, PCR-RFLP of MET2, the ITS1-ITS2 region and the NTS region) and physiological examination (melibiose and mannitol utilization, sugar-, ethanol- and copper tolerance, killer activity, fermentation vigor and production of metabolites) of yeasts isolated from spontaneously fermenting wines in four wine regions revealed very high diversity in the Saccharomyces cerevisiae populations. Practically each S. cerevisiae isolate showed a unique pattern of properties. Although the strains originating from the same wine were quite similar in certain traits, they showed diversity in other properties. These results indicate that alcoholic fermentation in grape wines is performed by highly diverse yeast consortia rather than by one or two dominating strains. The less frequent Saccharomyces uvarum strains were less diverse, showed lower karyotype variability, were Mel(+), Man(+), more sensitive to 60% sugar, and ethanol or copper in the medium. They produced less acetic acid and fermented better at 14 degrees C than most of the S. cerevisiae isolates, but certain S. cerevisiae strains showed comparably high fermentation rates at this temperature, indicating that it is not a general rule that S. uvarum ferments better than S. cerevisiae at low temperatures. The segregation of certain traits (melibiose utilization, mannitol utilization and copper resistance) in both species indicates that the genomes can easily change during vegetative propagation. The higher diversity among the S. cerevisiae isolates suggests that the S. cerevisiae genome may be more flexible than the S. uvarum genome and may allow more efficient adaptation to the continuously changing environment in the fermenting wine. (C) 2010 Published by Elsevier B.V.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据