4.7 Article Proceedings Paper

The physics of fatigue crack initiation

期刊

INTERNATIONAL JOURNAL OF FATIGUE
卷 57, 期 -, 页码 58-72

出版社

ELSEVIER SCI LTD
DOI: 10.1016/j.ijfatigue.2012.10.009

关键词

Fatigue; Crack initiation; Microstructure; Slip irreversibility; Persistent slip bands

向作者/读者索取更多资源

The fatigue life of a component can be expressed as the sum of two segments of life: (a) the number of loading cycles required to initiate a crack and (b) the number of cycles it takes that crack to propagate to failure. In this review, the primary emphasis is relating the fatigue crack initiation to the microstructure of the material. Many studies have focused on this phenomenon over the years and the goal of this paper is to put this work in perspective and encourage future work of fatigue in polycrystals based on the material's microstructure. In order to address fatigue, it is necessary to understand the mechanisms that facilitate crack initiation. Slip irreversibilities exist in a material and accumulate during fatigue loading. At the defect level, irreversibilities are a result of dislocations: annihilating, cross-slipping, penetrating precipitates, transmitting through grain boundaries, and piling-up. These slip irreversibilities are the early signs of damage during cyclic loading. The dislocations subsequently form low-energy, stable structures as a means to accommodate the irreversible slip processes and increasing dislocation density during cyclic forward and reverse loading. The result is strain localizing in a small region within the materials, i.e. persistent slip bands and dislocation cells/bundles. Strain localization is a precursor to crack initiation. This review paper will focus on experimental observations of strain localization and the theory and numerical analysis of both slip irreversibilities and low energy configuration defect structures. This fundamental understanding is necessary to study persistent slip bands in FCC metals and alloys including the appropriate characterization, theory, and modeling. From this fundamental knowledge both micromechanical and crystal plasticity models can be used to predict crack initiation, which are also reviewed. Finally, this review ends with a discussion of the future of fatigue modeling and experiments. (C) 2012 Elsevier Ltd. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据