4.7 Article

Fatigue strengthening of damaged metallic beams using prestressed unbonded and bonded CFRP plates

期刊

INTERNATIONAL JOURNAL OF FATIGUE
卷 44, 期 -, 页码 303-315

出版社

ELSEVIER SCI LTD
DOI: 10.1016/j.ijfatigue.2012.03.006

关键词

Fatigue strengthening; Carbon fiber reinforced polymer (CFRP); Steel beams; Fatigue crack growth (FCG); Fracture mechanics

向作者/读者索取更多资源

Bonded fiber reinforced polymers (FRPs) reinforcement systems have traditionally been found to be an efficient method for improving the lifespan of fatigued metallic structures and have attracted much research attention. Nevertheless, the performance of a bonded FRP reinforcement system under fatigue loading is basically dependent on the FRP-to-metal bond behavior. In this paper, a prestressed unbonded reinforcement (PUR) system was developed. The proposed PUR system can be used as an alternative to bonded FRP reinforcement, particularly when there is concern about the effects of high ambient temperatures, moisture, water and fatigue loading on the FRP-to-metal bond behavior. The performance of cracked beams strengthened by the PUR system was compared with that of cracked beams strengthened by the prestressed bonded reinforcement (PBR) system. A theoretical method was developed to estimate the level of prestressing sufficient to arrest fatigue crack growth (FCG). Furthermore, the method was used to examine different passive, semi-active and active crack modes with a loaded, strengthened beam. The mechanism by which a prestressed FRP plate forms a compressive stress field at the vicinity of the crack tip was also examined. Finite element (FE) modeling was conducted and the results were compared with experimental results. (C) 2012 Elsevier Ltd. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据