4.7 Article

Fatigue life prediction of composite laminates by FEA simulation method

期刊

INTERNATIONAL JOURNAL OF FATIGUE
卷 32, 期 1, 页码 123-133

出版社

ELSEVIER SCI LTD
DOI: 10.1016/j.ijfatigue.2009.01.015

关键词

Composite laminates; Fatigue life; Stiffness degradation; Strength degradation; Failure criterion; Finite element analysis

向作者/读者索取更多资源

This paper is to simulate the fatigue damage evolution in composite laminates and predict fatigue life of the laminates with different lay-up sequences on the basis of the fatigue characteristics of longitudinal, transverse and in-plane shear directions by finite element analysis (FEA) method. In FEA model, considering the scatter of the material's properties, each element was assigned with different material's properties. The stress analysis was carried out in MSC Patran/Nastran, and a modified Hashin's failure criterion was applied to predict the failure of the elements. A new stiffness degradation model was proposed and applied in the simulation and then a strength degradation model was deduced, which is coupled with the presented stiffness degradation model. The reduced or discounted elastic constants were determined based on the failure mechanism of the laminates and the restrictive conditions of orthotropic property. The fatigue behavior and fatigue life of six kinds of E-glass/epoxy composite laminates with different lay-up sequences were experimentally studied, and the S-N curves and stiffness degradation models in longitudinal, transverse and in-plane shear direction were obtained. These fatigue data were adopted in the simulation to Simulate fatigue behavior and estimate life of the laminates. The simulation results, including the fatigue life predicted and the residual stiffness, were coincident with the experimental results well except for the quasi-isotropic laminate for the lack of consideration of the out-of-plane fatigue character in the simulation. (C) 2009 Elsevier Ltd. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据