4.5 Article

Assessment of mercury heavy metal toxicity-induced physiochemical and molecular changes in Sesbania grandiflora L.

出版社

SPRINGER
DOI: 10.1007/s13762-014-0699-4

关键词

Antioxidative enzymes; Genotoxicity; Heavy metal pollution; Mercury toxicity; Phytoremediation

向作者/读者索取更多资源

Mercury (Hg) is one of the major toxic heavy metals because it bioaccumulates and biomagnifies in animal and human bodies via the food chain. To eliminate heavy metal contamination, plants are being used as removal agents of pollutants/toxic chemicals from the environment. The present study was mainly focused on elucidating the potential phytotoxic effects of Hg heavy metal ion exposure on Sesbania grandiflora seedlings. Growth of seedlings was significantly affected (56 %) at 60 mg L-1 Hg concentration. The level of chlorophyll pigment contents was increased in Hg-treated plants compared to the control. Malondialdehyde content and antioxidative enzyme activities were found to be significantly increased by increasing the concentration of Hg exposure up to 40 mg L-1 while slightly decreased at higher doses. The DNA alterations appearing in the random amplified polymorphic DNA (RAPD) profiles of leaf and root tissues following Hg heavy metal exposure included the disappearance of normal DNA bands and the appearance of new bands compared to the untreated controls. This result strongly indicated that genomic template stability was significantly affected by Hg-induced stress in S. grandiflora seedlings. It is concluded that DNA polymorphisms detected by RAPD fingerprinting analysis could be used as potential molecular markers for the evaluation of Hg heavy metal ion-induced genotoxic effects in other plant species.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据