4.7 Article

Thermo-viscoelastic response of nanocomposite melts

期刊

出版社

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.ijengsci.2007.09.004

关键词

thermoplastic elastomer; hybrid nanocomposite melt; shear oscillations; thermo-viscoelasticity; constitutive equations

向作者/读者索取更多资源

Observations are reported in shear oscillatory tests with small strains (the frequency-sweep mode) on a hybrid nanocomposite melt [thermoplastic elastomer (ethylene-octene copolymer) reinforced with various concentrations of montmorillonite nanoclay] at temperatures ranging from 150 to 210 degrees C. A constitutive model is developed for the viscoelastic behavior of a nanocomposite melt at arbitrary three-dimensional deformations with small strains. The melt is treated as an inhomogeneous, permanent polymer network with sliding junctions (entanglements and physical cross-links at the surfaces of nanofiller). It is assumed that macro-deformation induces sliding (plastic flow) of junctions between strands with respect to their reference positions, and the strain energy of the network depends on strain tensors for elastic and plastic deformations. Stress-strain relations are derived by using the laws of thermodynamics. These equations involve four adjustable parameters that are found by fitting the observations. It is demonstrated that (i) the governing equations correctly reproduce the experimental data and (ii) the material parameters change consistently with temperature and concentration of filter. (c) 2007 Elsevier Ltd. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据