4.6 Article

Evaluation of Magnesium Die-Casting Alloys for Elevated Temperature Applications: Microstructure, Tensile Properties, and Creep Resistance

出版社

SPRINGER
DOI: 10.1007/s11661-015-2946-9

关键词

-

资金

  1. CAST Co-operative Research Centre
  2. Australian Government's Cooperative Research Centres (CRC) scheme
  3. Australian Research Council (ARC) [LP130100828]

向作者/读者索取更多资源

Several families of magnesium die-casting alloys have been developed to operate at the elevated temperatures experienced in automotive powertrain applications. Most alloys are based on the Mg-Al system with alloying additions such as silicon, strontium, calcium, and rare earth elements (RE), although alloys with RE as the primary alloying constituent are also considered. This work presents an evaluation of the tensile properties and creep resistance of the most common magnesium die-casting alloys, in conjunction with the analysis of microstructure. The alloys investigated include AS31 (Mg-3Al-1Si), AJ52 (Mg-5Al-2Sr), MRI153A (Mg-9Al-1Ca-0.1Sr), MRI153M (Mg-8Al-1Ca-0.3Sr), MRI230D (Mg-6.5Al-2Ca-1Sn-0.3Sr), AXJ530 (Mg-5Al-3Ca-0.2Sr), AE42 (Mg-4Al-2RE), AE44 (Mg-4Al-4RE), and AM-HP2+ (Mg-3.5RE-0.4Zn). It is shown that, among the various alloys evaluated, MRI230D, AXJ530, and AM-HP2+ have higher yield strength than the Al alloy A380, but the ductility is relatively low at room temperature for these alloys. In contrast, AS31 and the AE series alloys have very good room temperature ductility, but their yield strength is lower than that of A380. In terms of creep resistance, MRI230D, AXJ530, AE44, and AM-HP2+ are all comparable to the Al alloy counterpart at 423 K and 448 K (150 A degrees C and 175 A degrees C). Microstructural factors that are most important to the strength and creep resistance of the Mg die-casting alloys are discussed. (C) The Minerals, Metals & Materials Society and ASM International 2015

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据