4.5 Article

Relationship between super-knock and pre-ignition

期刊

INTERNATIONAL JOURNAL OF ENGINE RESEARCH
卷 16, 期 2, 页码 166-180

出版社

SAGE PUBLICATIONS LTD
DOI: 10.1177/1468087414530388

关键词

High boost; gasoline engine; super-knock; pre-ignition; detonation

资金

  1. National Natural Science Foundation of China [51036004]

向作者/读者索取更多资源

High boost and direct injection are the main tendency of gasoline engine technology. However, pre-ignition/super-knock tends to occur at low-speed high-load conditions, which is the main obstacle for improving power density and fuel economy. This work distinguished the relationship between super-knock and pre-ignition by experimental investigation and numerical simulation. The experiment was conducted on a turbocharged gasoline direct injection engine with compression ratio of 10. The engine was operated at an engine speed of 1750 r/min and the brake mean effective pressure of 2.0 MPa under stoichiometric conditions. Super-knock is the severe engine knock triggered by pre-ignition. Pre-ignition may lead to super-knock, heavy-knock, slight-knock, and non-knock. Significantly advancing spark timing can only simulate pre-ignition, not super-knock. Although knock intensity tends to increase with earlier pre-ignition timing, higher unburned mixture fraction at start of knock, and higher temperature and pressure of the unburned mixture at start of knock, knock intensity cannot be simply correlated to any of the parameters above. A one-dimensional model is set up to numerically simulate the possible combustion process of the end-gas after pre-ignition. Two distinct end-gas combustion modes are identified depending on the pressure and temperature of the mixture: deflagration and detonation. Hot-spot in the mixture at typical near top dead center pressure and temperature condition can only induce deflagration. Hot-spot in the unburned end-gas mixture at temperature and pressure conditions above ''deto-curve'' may induce detonation. The mechanism of deto-knock may be described as hot-spot-triggered pre-ignition followed by hotspot- induced deflagration to detonation.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据