4.7 Article

Performance prediction of a RPF-fired boiler using artificial neural networks

期刊

INTERNATIONAL JOURNAL OF ENERGY RESEARCH
卷 38, 期 8, 页码 995-1007

出版社

WILEY-HINDAWI
DOI: 10.1002/er.3108

关键词

modeling; neural network; RPF-fired boiler; real plant data; operational performance

资金

  1. Regional Technology Innovation Program - Ministry of Land, Transport and Maritime Affairs of Korean government [08 RTI B-03]

向作者/读者索取更多资源

In order to provide adequate engineering assistance and to improve the energy efficiency in process industries, it is crucial to evaluate the operational performance of a boiler in terms of its practical requirements, viz. temperature, pressure, and mass flow rate of steam. This study was aimed at assessing and optimizing the performance of a refuse plastic fuel-fired boiler using artificial neural networks. A feed-forward back propagation neural network model was developed and trained using existing plant data (5months), to predict temperature, pressure, and mass flow rate of steam, using the following input parameters: feed water pressure, feed water temperature, conveyor speed, and incinerator exit temperature. The predictive capability of the model was evaluated in terms of mean absolute percentage error between the model fitted and actual plant data, while sensitivity analysis was performed on the input parameters by determining the absolute average sensitivity values. The higher absolute average sensitivity value of the incinerator exit temperature in comparison to that of feed water pressure, feed water temperature and conveyor speed suggested that the change of incineration exit temperature has a significant influence on the selected outputs (steam properties). Overall, the good results observed from this work demonstrate the fact that artificial neural networks can efficiently predict the data on steam properties and could serve as a good tool to monitor boiler behavior under real-time conditions. Copyright (c) 2013 John Wiley & Sons, Ltd.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据