4.6 Article

Real-time voltage control algorithm with switched capacitors in smart distribution system in presence of renewable generations

出版社

ELSEVIER SCI LTD
DOI: 10.1016/j.ijepes.2013.07.010

关键词

Distribution system; Renewable distributed generation; Switched capacitor; Smart grid; Voltage control

向作者/读者索取更多资源

One of the most important responsibilities of Distribution System Operator (DSO) is to maintain the customer voltage within specified ranges. Capacitor banks have long been used to provide voltage support and to correct displacement power factor on distribution network. This paper presents a new approach for real time voltage control of distribution networks that has improvements over the conventional voltage control models. This approach will be active in emergency conditions where, in real time, the voltages in some nodes leave their permissible ranges. In the proposed model, it is assumed that renewable distributed generations are integrated in the distribution system, and the communication infrastructure of smart grid has already been implemented. Also, all the capacitors are fitted with Remote Terminal Unit (RTU) and are completely accessible and controllable. Unlike previous voltage control methods, the proposed approach does not need the load and renewable generation forecast data to regulate voltage. Moreover, the calculation time of the proposed approach is considerably reduced. The proposed voltage control algorithm is applied on two different models, and each presented model has a substantial improvement over previous models. DSO can choose one of them based on a trade-off between cost and power quality index. To verify the effectiveness and robustness of the proposed control scheme, the developed voltage control scheme is tested on a typical distribution network. The simulation results show that the proposed real time voltage control has the capability to maintain distribution voltage in specified ranges. (C) 2013 Elsevier Ltd. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据