4.7 Article

Metabolic engineering of Saccharomyces cerevisiae to improve 1-hexadecanol production

期刊

METABOLIC ENGINEERING
卷 27, 期 -, 页码 10-19

出版社

ACADEMIC PRESS INC ELSEVIER SCIENCE
DOI: 10.1016/j.ymben.2014.10.001

关键词

Fatty alcohol; Yeast; Regulator; Phospholipid; Acetyl-CoA; Metabolic engineering

资金

  1. Energy Biosciences Institute [007G21]
  2. Department of Chemical and Biomolecular Engineering at the University of Illinois at Urbana-Champaign

向作者/读者索取更多资源

Fatty alcohols are important components of a vast array of surfactants, lubricants, detergents, pharmaceuticals and cosmetics. We have engineered Saccharomyces cerevisiae to produce 1-hexadecanol by expressing a fatty acyl-CoA reductase (FAR) from barn owl (Tyto alba). In order to improve fatty alcohol production, we have manipulated both the structural genes and the regulatory genes in yeast lipid metabolism. The acetyl-CoA carboxylase gene (ACC1) was over-expressed, which improved 1-hexadecanol production by 56% (from 45 mg/L to 71 mg/L). Knocking out the negative regulator of the INO1 gene in phospholipid metabolism, RPD3, further enhanced 1-hexadecanol production by 98% (from 71 mg/L to 140 mg/L). The cytosolic acetyl-CoA supply was next engineered by expressing a heterologous ATP-dependent citrate lyase, which increased the production of 1-hexadecanol by an additional 136% (from 140 mg/L to 330 mg/L). Through fed-batch fermentation using resting cells, over 1.1 g/L 1-hexadecanol can be produced in glucose minimal medium, which represents the highest titer reported in yeast to date. (C) 2014 International Metabolic Engineering Society. Published by Elsevier Inc. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据