4.5 Article

Kolaviron was protective against sodium azide (NaN3) induced oxidative stress in the prefrontal cortex

期刊

METABOLIC BRAIN DISEASE
卷 31, 期 1, 页码 25-35

出版社

SPRINGER/PLENUM PUBLISHERS
DOI: 10.1007/s11011-015-9674-0

关键词

Astrogliosis; Oxidative stress; Azide; Neuron; Metabolism; Cytoskeleton; Cell cycle; Kolaviron

资金

  1. ISN-CAEN 1A - International Society for Neurochemistry

向作者/读者索取更多资源

Kolaviron is a phytochemical isolated from Garcina kola (G. kola); a common oral masticatory agent in Nigeria (West Africa). It is a bioflavonoid used - as an antiviral, anti-inflammatory and antioxidant - in relieving the symptoms of several diseases and infections. In this study we have evaluated the neuroprotective and regenerative effect of kolaviron in neurons of the prefrontal cortex (Pfc) before or after exposure to sodium azide (NaN3) induced oxidative stress. Separate groups of animals were treated as follows; kolaviron (200 mg/Kg) for 21 days; kolaviron (200 mg/Kg for 21 days) followed by NaN3 treatment (20 mg/Kg for 5 days); NaN3 treatment (20 mg/Kg for 5 days) followed by kolaviron (200 mg/Kg for 21 days); 1 ml of corn-oil (21 days-vehicle); NaN3 treatment (20 mg/Kg for 5 days). Exploratory activity associated with Pfc function was assessed in the open field test (OFT) following which the microscopic anatomy of the prefrontal cortex was examined in histology (Haematoxylin and Eosin) and antigen retrieval Immunohistochemistry to show astroglia activation (GFAP), neuronal metabolism (NSE), cytoskeleton (NF) and cell cycle dysregulation (p53). Subsequently, we quantified the level of Glucose-6-phosphate dehydrogenase (G6PDH) and lactate dehydrogenase (LDH) in the brain tissue homogenate as a measure of stress-related glucose metabolism. Kolaviron (Kv) and Kolaviron/NaN3 treatment caused no prominent change in astroglia density and size while NaN3 and NaN3/Kv induced astroglia activation and scar formation (astrogliosis) in the Pfc when compared with the control. Similarly, Kolaviron and Kv/NaN3 did not alter NSE expression (glucose metabolism) while NaN3 and NaN3/Kv treatment increased cortical NSE expression; thus indicating stress related metabolism. Further studies on enzymes of glucose metabolism (G6PDH and LDH) showed that NaN3 increased LDH while kolaviron reduced LDH in the brain tissue homogenate (P < 0.001). In addition kolaviron treatment before (P < 0.001) or after (P < 0.05) NaN3 treatment also reduced LDH expression; thus supporting its role in suppression of oxidative stress. Interestingly, NF deposition increased in the Pfc after kolaviron treatment while Kv/NaN3 showed no significant change in NF when compared with the control. In furtherance, NaN3 and NaN3/Kv caused a decrease in NF deposition (degeneration). Ultimately, the protective effect of KV administered prior to NaN3 treatment was confirmed through p53 expression; which was similar to the control. However, NaN3 and NaN3/Kv caused an increase in p53 expression in the Pfc neurons (cell cycle dysregulation). We conclude that kolaviron is not neurotoxic when used at 200 mg/Kg BW. Furthermore, 200 mg/Kg of kolaviron administered prior to NaN3 treatment (Kv/NaN3) was neuroprotective when compared with Kolaviron administered after NaN3 treatment (NaN3/Kv). Some of the observed effects of kolaviron administered before NaN3 treatment includes reduction of astroglia activation, absence of astroglia scars, antioxidation (reduced NSE and LDH), prevention of neurofilament loss and cell cycle regulation.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据