4.6 Article

Prediction of Incipient Damage Sites in Composites using Classifiers

期刊

INTERNATIONAL JOURNAL OF DAMAGE MECHANICS
卷 19, 期 2, 页码 233-260

出版社

SAGE PUBLICATIONS LTD
DOI: 10.1177/1056789508096614

关键词

composites; micromechanics; stochastic mechanics; elasticity; damage initiation; classification; pattern recognition

资金

  1. U.S. National Science Foundation [0423582]
  2. Div Of Civil, Mechanical, & Manufact Inn
  3. Directorate For Engineering [0423582] Funding Source: National Science Foundation

向作者/读者索取更多资源

This paper describes a method for predicting locations in a two-phase material where effective elastic strain is concentrated above a specified threshold value by virtue of the local arrangement of phases and a specified set of boundary conditions. This prediction is made entirely based on knowledge of the material properties of the phases, their spatial arrangement, and the boundary conditions, and does not require numerical solution of the equations of elasticity. The example problem is a 2D idealization of a fiber-or particle-reinforced composite in which the fibers/particles are randomly placed in the matrix and the boundary conditions correspond to uniaxial extension. The method relies on a moving window implementation of a decision tree classifier that predicts, for all points in the material, whether the effective elastic strain will exceed a specified threshold value. The classifier operates on a set of attributes that are the coefficients of a series expansion of a discretized version of the phase geometry. The basis vectors appearing in this series expansion of the phase geometry are derived from a principal components analysis of a set of training samples for which the mechanical response is calculated using finite element analysis. These basis vectors allow the accurate representation of the phase geometry with many fewer parameters than is typical, and, because the training samples contain information regarding the mechanical response of the material, also allow prediction of the response using a classifier that takes a relatively small number of input attributes. The predictive classifier is tested on simulated two-phase material samples that are not part of the original training set, and correctly predicts whether efffective elastic strain will be elevated above a specified threshold with greater than 90% accuracy.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据