4.5 Article

Surface roughness prediction in machining using soft computing

出版社

TAYLOR & FRANCIS LTD
DOI: 10.1080/09511920802287138

关键词

artificial neural network; computational intelligence; fuzzy logic; genetic algorithm; machining; process monitoring; surface texture; average roughness

向作者/读者索取更多资源

A study is presented to model surface roughness in end milling using adaptive neuro-fuzzy inference system (ANFIS) and genetic algorithms (GAs). The machining parameters, namely, the spindle speed, feed rate, depth of cut and the workpiece-tool vibration amplitude have been used as inputs to model the workpiece surface roughness. The number and the parameters of membership functions used in ANFIS along with the most suitable inputs are selected using GAs maximising the modelling accuracy. The ANFIS with GAs (GA-ANFIS) are trained with a subset of the experimental data. The trained GA-ANFIS are tested using the set of validation data. The procedure is illustrated using the experimental data of a CNC vertical machining centre in end-milling of 6061 aluminum. Results are compared with other soft computing techniques like genetic programming (GP) and artificial neural network (ANN). The results show the effectiveness of the proposed approach in modelling the surface roughness.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据