4.4 Article

Code division multiple access/pulse position modulation ultra-wideband radio frequency identification for Internet of Things: concept and analysis

期刊

INTERNATIONAL JOURNAL OF COMMUNICATION SYSTEMS
卷 25, 期 9, 页码 1103-1121

出版社

WILEY
DOI: 10.1002/dac.2312

关键词

CDMA-PPM UWB; RFID; Internet of Things; detection scheme; medium access control; performance analysis

向作者/读者索取更多资源

Radio frequency identification (RFID) is a compelling technology for Internet of Things (IoT). Ultra-wideband (UWB) technology is one promising wireless technique for future RFID, especially for high-throughput sensing applications. On-off keying UWB RFID system provides high pulse rate but suffers severe collisions that limit the system throughput. This paper proposes to utilize low pulse rate code division multiple access/pulse position modulation UWB in the tag-to-reader link to provide multiple tag access capability and build a high-throughput RFID system for IoT. We analyze asynchronous matched filter receiver and decorrelating receiver for multi-tag detection and design an effective medium access control scheme to optimize the network throughput. We propose an effective dynamic frame size adjustment algorithm on the basis of theoretical analysis and determine the preferable length of Gold codes. With a similar data rate, the throughput of the proposed system using the decorrelating receiver is 8.6 times higher than that of the electronic product code class 1 generation 2 system. Only using 1/10 pulse rate and 1/15 data rate, the proposed system outperforms the on-off keying UWB RFID system 1.4 times in terms of throughput. Copyright (c) 2012 John Wiley & Sons, Ltd.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.4
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据