4.7 Article

Mineralogical and geochemical responses of coal to igneous intrusion in the Pansan Coal Mine of the Huainan coalfield, Anhui, China

期刊

INTERNATIONAL JOURNAL OF COAL GEOLOGY
卷 124, 期 -, 页码 11-35

出版社

ELSEVIER SCIENCE BV
DOI: 10.1016/j.coal.2013.12.018

关键词

Mineral; Trace element; Igneous intrusion; Coal; Huainan coalfield

资金

  1. National Key Basic Research Program of China [2014CB238903]
  2. National Natural Science Foundation of China [41173032, 41373110]
  3. Creative Project of the Huainan Mining Industry (Group) Co. Ltd.

向作者/读者索取更多资源

The Huainan coalfield, where magma is commonly intruded into the coal measures in the northern section, (e.g., the Zhuji, Dingji, Pansan, and Panbei mines), is the largest energy base in eastern China. To investigate the mineralogical and geochemical responses of coal to igneous intrusion, minerals, major and trace elements in sandstone, thermally-altered coal, igneous rock, sandy mudstone, and unaltered coal samples were collected from a representative profile of the No. 1 Coal of the Pansan Coal Mine. The samples were analyzed using an optical microscope, powder X-ray diffraction, scanning electron microscopy in conjunction with X-ray energy dispersive spectroscopy, X-ray fluorescence, inductively coupled plasma atomic emission spectrometry and mass spectrometry. The results indicated that the thick sill transformed from mafic rocks at the bottom, via intermediate rocks in the middle to felsic rocks at the top of the profile. The moisture, total sulfur, and carbon contents of the coal increased, whereas volatile matter, hydrogen, and nitrogen decreased during contact metamorphism caused by igneous intrusion. Epigenetic minerals (i.e., dolomite, quartz, and pyrite) occurred in the thermally-altered coals. Three stages of hydrothermal fluids (i.e., Ca-, Mg-, and Fe-rich; Si-rich; and Fe- and/or H2S-rich solutions) were identified. Iron, Ca, S, Si, Mg, Zn, Cd, and Pb were transported into the thermally-altered coal by hydrothermal fluids. The concentrations of Co and Ni in the thermally-altered coal increased in relation to the increase of ash yields that were caused by contact metamorphism, whereas the B in the coal was volatilized. Manganese is directly related to the intrusive magma. Phosphorus, Ge, and Sr might be introduced into the coal by groundwater; however, K, Na, Ga, and Ba were leached out. Titanium, Sc, Cr, V, Cu, Zr, Nb, and rare earth elements and yttrium (REY) in the coals originated from terrigenous input and were not influenced by igneous intrusion. (C) 2014 Elsevier B.V. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据