4.6 Article

Bias correction of daily precipitation simulated by a regional climate model: a comparison of methods

期刊

INTERNATIONAL JOURNAL OF CLIMATOLOGY
卷 33, 期 6, 页码 1367-1381

出版社

WILEY
DOI: 10.1002/joc.3518

关键词

regional climate model; bias correction; daily precipitation; downscaling; cross-validation; UK

资金

  1. UK Department for Food and Rural Affairs via the Environment Agency
  2. UK Natural Environment Research Council [NE/011969/1]
  3. Natural Environment Research Council [ceh010022] Funding Source: researchfish

向作者/读者索取更多资源

Quantifying the effects of future changes in the frequency of precipitation extremes is a key challenge in assessing the vulnerability of hydrological systems to climate change but is difficult as climate models do not always accurately simulate daily precipitation. This article compares the performance of four published techniques used to reduce the bias in a regional climate model precipitation output: (1) linear, (2) nonlinear, (3) -based quantile mapping and (4) empirical quantile mapping. Overall performance and sensitivity to the choice of calibration period were tested by calculating the errors in the first four statistical moments of generated daily precipitation time series and using a cross-validation technique. The study compared the 19612005 precipitation time series from the regional climate model HadRM3.0-PPE-UK (unperturbed version) with gridded daily precipitation time series derived from rain gauges for seven catchments spread throughout Great Britain. We found that while the first and second moments of the precipitation frequency distribution can be corrected robustly, correction of the third and fourth moments of the distribution is much more sensitive to the choice of bias correction procedure and to the selection of a particular calibration period. Overall, our results demonstrate that, if both precipitation data sets can be approximated by a -distribution, the -based quantile-mapping technique offers the best combination of accuracy and robustness. In circumstances where precipitation data sets cannot adequately be approximated using a -distribution, the nonlinear method is more effective at reducing the bias, but the linear method is least sensitive to the choice of calibration period. The empirical quantile mapping method can be highly accurate, but results were very sensitive to the choice of calibration time period. However, it should be borne in mind that bias correction introduces additional uncertainties, which are greater for higher order moments. Copyright (c) 2012 Royal Meteorological Society

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据