4.7 Article

Functional characterization of a BRAF insertion mutant associated with pilocytic astrocytoma

期刊

INTERNATIONAL JOURNAL OF CANCER
卷 129, 期 9, 页码 2297-2303

出版社

WILEY
DOI: 10.1002/ijc.25893

关键词

pilocytic astrocytoma; neurofibromatosis type 1; B-Raf; insertion mutagenesis; MAPK pathway

类别

资金

  1. German Research Foundation (DFG) [BR 3662/1-1]
  2. CRC [850]
  3. Excellence Initiative of the German Federal and State Governments [BIOSS (EXC 294)), SGBM (GSC-4]

向作者/读者索取更多资源

Pilocytic astrocytoma (PA) is emerging as a tumor entity with dysregulated Ras/Raf/MEK/ERK signaling. Common genetic lesions observed in PA, which are linked to aberrant ERK pathway activity, include either NF1 inactivation, KRAS or BRAF gain-of-function mutations. To investigate the mutation spectrum within the proto-oncogene encoding the Ser/Thr-kinase B-Raf in more detail, we analyzed 64 primary tumor samples from children with PA including two patients with neurofibromatosis type 1 (NF1). The well-known BRAF(V600E) mutation was found in 6/64 (9.38%) of our samples. For the first time, we report concomitant presence of a somatic BRAFV(600E) mutation in an NF1 patient indicating that more than one Ras/ERK pathway component can be affected in PA. Furthermore, 2/64 (3.13%) of our samples carried a 3-bp insertion in BRAF resulting in the duplication of threonine 599. This conserved residue is located within the activation segment and, if phosphorylated in a Ras-dependent manner, plays a key role in Raf activation. Here, we demonstrate that this mutant (B-Raf(insT)) and another B-Raf mutant, which carries two additional threonine residues at this position, display an in vitro kinase activity and cellular MEK/ERK activation potential comparable to those of B-Raf(V600E). Notably, replacement of threonines by valine residues had similar effects on B-Raf activity, suggesting that the distortion of the peptide backbone by additional amino acids rather than the insertion of additional, potential phosphorylation sites destabilizes the inactive conformation of the kinase domain. We also demonstrate that B-Raf(insT) and B-Raf(V600E), but not B-Raf(wt), provoke drastic morphological alterations in human astrocytes.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据