4.7 Article

Breath gas aldehydes as biomarkers of lung cancer

期刊

INTERNATIONAL JOURNAL OF CANCER
卷 126, 期 11, 页码 2663-2670

出版社

JOHN WILEY & SONS INC
DOI: 10.1002/ijc.24970

关键词

breath; aldehydes; volatile organic compounds; cancer; SPME-OFD

类别

资金

  1. European Commission [LSHC-CT-2005-019031]
  2. Ministry of Economical Affairs [V230-630-08-TFMV-S-015, V230-630-08-TEMV-F-015]

向作者/读者索取更多资源

There is experimental evidence that volatile substances in human breath can reflect presence of neoplasma. Volatile aldehydes were determined in exhaled breath of 12 lung cancer patients, 12 smokers and 12 healthy volunteers. Alveolar breath samples were collected under control of expired CO(2). Reactive aldehydes were transformed into stable oximes by means of on-fiber-derivatization (SPME-OFD). Aldehyde concentrations in the ppt and ppb level were determined by means of gas chromatography-mass spectrometry (GC-MS). Exhaled concentrations were corrected for inspired values. Exhaled C(1)-C(10) aldehydes could be detected in all healthy volunteers, smokers and lung cancer patients. Concentrations ranged from 7 pmol/l (161 pptV) for butanal to 71 nmol/l (1,582 ppbV) for formaldehyde. Highest inspired concentrations were found for formaldehyde and acetaldehyde (0-55 nmol/l and 0-13 nmol/l, respectively). Acetaldehyde, propanal, butanal, heptanal and decanal concentrations showed no significant differences for cancer patients, smokers and healthy volunteers. Exhaled pentanal, hexanal, octanal and nonanal concentrations were significantly higher in lung cancer patients than in smokers and healthy controls (p(pentanal) = 0.001; p(hexanal) = 0.006; p(octanal) = 0.014; p(nonanal) = 0.025). Sensitivity and specificity of this method were comparable to the diagnostic certitude of conventional serum markers and CT imaging. Lung cancer patients could be identified by means of exhaled pentanal, hexanal, octanal and nonanal concentrations. Exhaled aldehydes reflect aspects of oxidative stress and tumor-specific tissue composition and metabolism. Noninvasive recognition of lung malignancies may be realized if analytical skills, biochemical knowledge and medical expertise are combined into a joint effort.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据