4.5 Article

GENERALIZED FRACTIONAL ORDER BLOCH EQUATION WITH EXTENDED DELAY

出版社

WORLD SCIENTIFIC PUBL CO PTE LTD
DOI: 10.1142/S021812741250071X

关键词

Fractional calculus; Bloch equation; delay

资金

  1. Department of Science and Technology, N. Delhi, India [SR/S2/HEP-24/2009]

向作者/读者索取更多资源

The fundamental description of relaxation (T-1 and T-2) in nuclear magnetic resonance (NMR) is provided by the Bloch equation, an integer-order ordinary differential equation that interrelates precession of magnetization with time-and space-dependent relaxation. In this paper, we propose a fractional order Bloch equation that includes an extended model of time delays. The fractional time derivative embeds in the Bloch equation a fading power law form of system memory while the time delay averages the present value of magnetization with an earlier one. The analysis shows different patterns in the stability behavior for T-1 and T-2 relaxation. The T-1 decay is stable for the range of delays tested (1 mu sec to 200 mu sec), while the T-2 relaxation in this extended model exhibits a critical delay (typically 100 mu sec to 200 mu sec) above which the system is unstable. Delays arise in NMR in both the system model and in the signal excitation and detection processes. Therefore, by adding extended time delay to the fractional derivative model for the Bloch equation, we believe that we can develop a more appropriate model for NMR resonance and relaxation.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据