4.2 Article

Development of a novel method for decellularizing a nerve graft using a hypertonic sodium chloride solution

期刊

INTERNATIONAL JOURNAL OF ARTIFICIAL ORGANS
卷 37, 期 11, 页码 854-860

出版社

WICHTIG EDITORE
DOI: 10.5301/ijao.5000365

关键词

Nerve transfer; Nerve regeneration; Tissue scaffolds; Peripheral nerves; Extracellular matrix

资金

  1. Grants-in-Aid for Scientific Research [25670750] Funding Source: KAKEN

向作者/读者索取更多资源

Purpose: Acellular nerves are a reconstruction material and provide scaffolds for nerve regeneration. Numerous methods to develop acellular nerves have been described. However, these methods pose problems that can be attributed to incomplete acellular processing and destruction of the extracellular matrix (ECM); the former may lead to rejection response, while the latter may damage the scaffold. In order to overcome problems associated with the above-mentioned methods, we developed a novel method that employs a hypertonic sodium chloride solution to decellularize nerve graft material. Methods: Rat sciatic nerves were harvested, dipped in hypertonic sodium chloride solution (1 M), and shaken for 24 h. We then washed the nerves in phosphate-buffered saline for 7 days with shaking and evaluated the acellular nerves by hematoxylin-eosin (H-E) staining, immunostaining, and electron microscopy. We then transplanted the grafts to the sciatic nerve of another rat and evaluated the outcomes by H-E staining, immunostaining (anti-neurofilament antibody, anti-S-100 antibody), anterograde nerve tracing, and electron microscopy. Results: We found that our method successfully decellularized the grafts, but was mild enough to leave the ECM intact. Two months after transplantation, immunostaining and anterograde nerve tracing confirmed that Schwann cells infiltrated the grafts and induced neurofilament extension. Conclusions: Our methodology preserves the ECM, is simple to develop, and does not involve substances that harm biogenic tissue. Acellular nerve tissue processed in this way could become a substitute material for bridging nerve gaps. Our method could also aid in the development of other acellular tissues.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.2
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据