4.7 Article

A kernel functions analysis for support vector machines for land cover classification

出版社

ELSEVIER SCIENCE BV
DOI: 10.1016/j.jag.2009.06.002

关键词

Classification; Support vector machines; Radial basis function; Polynomial kernel; Maximum likelihood

向作者/读者索取更多资源

Information about the Earth's surface is required in many wide-scale applications. Land cover/use classification using remotely sensed images is one of the most common applications in remote sensing, and many algorithms have been developed and applied for this purpose in the literature. Support vector machines (SVMs) are a group of supervised classification algorithms that have been recently used in the remote sensing field. The classification accuracy produced by SVMs may show variation depending on the choice of the kernel function and its parameters. In this study, SVMs were used for land cover classification of Gebze district of Turkey using Landsat ETM+ and Terra ASTER images. Polynomial and radial basis kernel functions with their estimated optimum parameters were applied for the classification of the data sets and the results were analyzed thoroughly. Results showed that SVMs, especially with the use of radial basis function kernel, outperform the maximum likelihood classifier in terms of overall and individual class accuracies. Some important findings were also obtained concerning the changes in land use/cover in the study area. This study verifies the effectiveness and robustness of SVMs in the classification of remotely sensed images. (C) 2009 Elsevier B.V. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据