4.5 Article

Failure Analysis of Modern Silicon Dice

期刊

出版社

WILEY
DOI: 10.1111/ijac.12101

关键词

-

向作者/读者索取更多资源

Although the utilization of silicon dice in electronic devices has been in place for approximately 50 years, its widespread application has occurred more recently with the rapid expansion of the consumer markets for digital devices such as cameras, personal computers, video players, and smart phones. In particular, due to the recent market drive in the miniaturization and cost reduction of electronic products, silicon dice are often utilized without encapsulation and mounted directly to the substrate by means of conductive adhesives or BGA mounting. Silicon die often need to be thinned to a few hundred micrometers thickness to fit into compact devices and to reduce parasitics. The intrinsic brittle nature of silicon in combination with the lack of mechanical protection such as encapsulation has made fracture of bare dice a typical failure mechanism in handheld electronic devices. In the current work, we tested to failure {100} silicon dice and obtained mirror-mist boundary measurements for correlation to the fracture strengths of the parts. This work will also present various practical examples of how to reliably conduct failure analysis of fractured silicon dice. The intrinsic brittle nature of silicon in combination with the lack of mechanical protection such as encapsulation has made fracture of bare dice a typical failure mechanism in handheld electronic devices such as cameras, portable computers, tablets, media players, and smart phones. In these products, silicon dice are often utilized without encapsulation and are attached directly to the substrate by means of conductive adhesives or ball grid array mounting. Modern silicon dice used in these products typically have small dimensions and higher flexural strength compared to their predecessors. Prior silicon fractographic findings have investigated low strength failures. In the current work, we extend the quantitative fractography of silicon to the high failure stress regime. We have mechanically tested modern silicon dice to failure by four-point bending and obtained mirror-mist boundary measurements for correlation to the fracture strengths of the specimens. Two key areas are addressed which improve the practical application of quantitative fractography to modern silicon dice: (1) application of silicon fractography to high flexural strength regimes and (2) development of a systematic means of reliably measuring fracture surface features.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据