3.9 Article

The electrophoretic separation of spermatozoa: an analysis of genotype, surface carbohydrate composition and potential for capacitation

期刊

INTERNATIONAL JOURNAL OF ANDROLOGY
卷 34, 期 5, 页码 E422-E434

出版社

WILEY
DOI: 10.1111/j.1365-2605.2011.01164.x

关键词

Assisted Reproductive Technology; capacitation; sperm cells; sperm function < sperm cells; sperm motility < sperm cells; X chromosome; Y chromosome

资金

  1. ARC
  2. NuSep

向作者/读者索取更多资源

This study examines the properties of an electrophoretic device designed to effect the rapid isolation of spermatozoa for assisted conception purposes. In light of previous reports suggesting that X- and Y-bearing spermatozoa can be separated in an electric field, the first characteristic examined was the sex chromosome status of electrophoretically isolated spermatozoa. Exploiting sex chromosome-specific differences in the structure of the amelogenin gene, a quantitative PCR protocol was designed that allowed the rapid genotyping of isolated sperm suspensions. Reassuringly, application of this procedure demonstrated that the electrophoretic method did not result in a significant skewing of the ratio of X-and Y-bearing spermatozoa. Analysis of the molecular basis for electrophoretic sperm isolation demonstrated that sperm suspensions prepared in this manner were enriched in surface sialic acid residues that bound the Sambucus nigra agglutinin (SNA) lectin. Western blot analyses demonstrated the presence of four major SNA binding proteins, three of which were identified by MALDI-Tof mass spectrometry as aminopeptidase B, fucosyltransferase and prostatic acid phosphatase. The ability of neuraminidase to significantly suppress the electrophoretic isolation of spermatozoa emphasized the causative nature of this association between cell surface sialation and sperm behaviour in an electric field. Finally, seminal plasma proteins possessing decapacitation properties were shown to co-migrate with spermatozoa during their electrophoresis, necessitating their removal prior to in vitro fertilization. In terms of function, electrophoretically isolated cells were found to capacitate normally, exhibiting high levels of tyrosine phosphorylation and a capacity for extensive binding to homologous zonae pellucidae. We conclude that the electrophoretic procedure rapidly isolates functional spermatozoa via mechanisms that are independent of their genotype but reliant upon a net electronegative charge that is largely conferred by sperm surface glycoproteins.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

3.9
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据